

Thermal Performance of Spandrels

SUSTAINABLE DEVELOPMENT LEADERSHIP AND INVESTMENT OPPORTUNITIES

Who We Are

CHARLES PANKOW FOUNDATION

Building Innovation through Research

Independent, private grant-making foundation delivering better ways to design and build.

Our ambitions are large-scale, and require collective action and significant levels of investment, know-how and influence.

We provide leaders and organizations catalytic capital and the framework of success.

All work product is publicly shared for collective use and industry change.

Founded 2005

PROFESSIONAL'S GUIDE TO MANAGING THE DESIGN PHASE of a Design-Build Project

CONSTITUENTS POUNDATION

ORGANIZATIONS

COLLABORATIVE PROJECT DELIVERY

NOVEL STRUCTURAL SYSTEMS & ADVANCED MATERIALS

ENVIRONMENTAL TRANSPARENCY

Our Operating Model

The Team

Agenda

Bad

Why use spandrels?

What do we **not** know about spandrels?

What is the current future of "spandrels"?

Glazed Wall Spandrel Systems

A non-vision application of a fenestration product; typically used to hide or obscure features of the building structure or used for visual effect. **(NFRC 100)**

Prevalence of Glazed Wall Systems

Glazed wall systems represent roughly 40% of the building facade systems used in the downtown core of several major cities.

North American Glass Curtain Wall Market estimated > \$8.4 Billion in 2023

(Stellar Market Research, 2023)

BUILDING HEIGHT VS. GLAZED SYSTEM SUB-TYPE

BUILDING HEIGHT

Aesthetic

1

COPPERWORK

GARPETS

Speed of Construction

Other Advantages

National Fenestration Rating Council®

NATIONAL FENESTRATION RATING COUNCIL
LABEL CERTIFICATE

PRODUCT LISTING

FOR CODE COMPLIANCE

ABEL CERTIFICATE ID: XYZ-001 Issuance Date: mm/dd/yyy

NFRC CERTIFIED PRODUCT RATING INFORMATION:* The NFRC Certified Product Rating Information listed here is to be used to verify that the ratings meet applicable energy

						CERTIFIED Performance Rating at NFRC Model Size		
CPDID	Total Area	Name	Framing Ref	Glazing Ref	Spacer Ref	U**	SHGC"	VT**
	n²		1			Btu/ hr-ft-*F	•	•
P-PL-010	88.89	PL-2200 / PL-2210	FA-PL2210	GA-TT-001	SA-AM-001	0.53	0.58	0.56
P-PL-005	192.67	PL-3400 / PL-3401	FA-PL3401	GA-TT-001	SA-AM-002	0.56	0.57	0.65
P-PL-012	382.22	PL-5700 / PL-5720	FA-PL5720	GA-TO-002	SA-AM-001	0.52	0.21	0.30
P-PL-002	60.00	PL-1100 / PL-1152	FA-PL1152	GA-TT-001	SA-AM-001	0.42	0.51	0.62
P-PL-022	525.00	PL-9900 / PL-9915	FA-PL9915	GA-TO-003	SA-AM-002	0.45	0.15	0.19

FRAME, GLAZING and SPACER ASSEMBLIES

FRAMING REF	SUPPLIER ID	DESCRIPTION
FA-PL2210		Single Casement Thermally Broken Aluminum
FA-PL3401		Projecting (Awning) Thermally Broken Aluminum
FA-PL5720		Vertical Slider PVC reinforced with Steel
FA-PL1152		Vertical Slider Thermally Broken Aluminum
FA-PL9915		Fixed Thermally Broken Aluminum

GLAZING REF SUPPLIER ID		DESCRIPTION	
GA-TT-001		1* Double Glazed, 1/4" HC Low-e, 1/4" Clear, Argon (90%), 1/2" gap	
GA-TT-002		1* Triple Glazed, 1/8*Clear, Coated film, 1/8*SC, Argon (90%), 3/8* gap	
GA-TT-003		1* Double Glazed, 1/4* Bronze, 1/4* SC Low-e, Argon (90%), 1/2" gap	

PACER REF	SUPPLIER ID	DESCRIPTION			
SA-AM-001		250P Mill Finish Aluminum Low profile (1/2')			
SA-AM-002		15A Polymer Spacer (3/8')			

QA/QC

Potential for high levels of quality control and tight tolerances with factory production

3rd Party Rating

Spandrel Panel Systems are included in NFRC

What's in a label?

The truth about spandrel thermal performance....

Inaccurate thermal performance

Nonrepresentative conditions

Misleading energy performance and carbon emissions

Inaccurate Thermal Performance

Derated performance due to thermal bridging Spandrel with R-16.8 insulation

'Actual' **R-6.5!**

Hotbox Lab Measurement

3D Analysis

2D Analysis

			-	
Approach	Thermal Transmittance W/m²K (BTU/ft²hr°F)	Effective R-value m²K/W (ft²hr°F/BTU)	Percent Difference Compared to Hotbox Measurement	
Hotbox Measurement	0.87 (0.153)	1.2 (6.5)	-	
3D Analysis	0.87 (0.153)	1.2 (6.5)	0%	
2D NFRC-100	0.63 (0.111)	1.6 (9.0)	32%	
2D NFRC Modified	0.68 (0.120)	1.5 (8.3)	24%	
3D Analysis 2D NFRC-100 2D NFRC Modified	0.87 (0.153) 0.63 (0.111) 0.68 (0.120)	1.2 (6.5) 1.6 (9.0) 1.5 (8.3)	0% 32% 24%	

Nonrepresentative Conditions

VS

NFRC Spandrel Product Evaluation

Additional heat flow from adjacent components

Nonrepresentative Conditions

Additional heat flow and increased condensation risk

Building Energy Performance

Multi-unit residential building

- Compact shape
- 40% window to wall ratio
- R-40 roof
- U-0.35 windows, 0.3 SHGC (Double glazed)
- HRV 60%
- Standard construction
- Gas heating

Impact of 2D NFRC vs. Reality

PathFinder

Climate Zone 4

Heating Energy	GHG
31.33	10.96

Impact of 2D NFRC vs. Reality

Impact of 2D NFRC vs. Reality

What does the future hold?

State Level

CHARLES PANKOW

FOUNDATION Building Innovation through Research

Codes = Confusion

Classification

Opaque or Glazed?

Thermal Requirement

R-11 to R-30?

Calculation Method

Detailed analysis vs. Tabulated values?

Spandrel Assemblies

- Current systems = 20% to 40% worse than expected
- Current methods are inaccurate; no consensus on the appropriate method to use
- Thermal performance cannot be verified on-site
- Building energy use is higher than predicted during design, and so are the energy/carbon costs for Owners

How do you properly size AC and heating if you do not understand the performance of your system?

Penalizing Building Owners

New York City's Local Law 97

Percent below or above 2024 limit (%)

Multifamily

Percent below or above 2024 limit (%)

Data: LL84 filtered for data quality, emissions, and energy

Office

Data: LL84 filtered for data quality, emissions, and energy

Penalizing Building Owners

New York City's Local Law 97

Office

Multifamily

Annual Fine* = \$268 / CO₂eq *Assessed based on <u>energy bills NOT modeled energy</u>

Penalizing Building Owners

High-rise all curtain wall building in NYC built ~2010 (projected fines based on 2021 utility data)

		2024-2029	2030-2034	2035-2039	2040-2049	2050-
	Utility Cost (\$/yr)	\$7,087,463	\$7,087,463	\$7,087,463	\$7,087,463	\$7,087,463
	Est Penalty (\$/yr)	\$1,671,280	\$3,852,136	\$4,419,114	\$4,994,812	\$5,720,478
	Total Cost (\$/yr)	\$8,758,743	\$10,939,599	\$11,506,576	\$12,082,274	\$12,807,941
4M						
214						
2111						
0M						
8M						
6M						
4M						
2M						

Utility Cost Penalty

Existing Building Energy Disclosure Policies

$\mathbf{Codes}\ \leftrightarrows\ \mathbf{Design}$

1960s -1970s

2010s

Industry Need

A reliable and consensus-based thermal performance calculation procedure is required to:

- accurately assess current and new innovative spandrel designs.
- *realize the objectives of the codes.*
- *not penalize well-intentioned Designers/Owners/Developers/Manufacturers.*

Reduce Operational Energy and Carbon Footprint of Buildings

Research Timeline

FOUNDATION

Building Innovation through Research

Started Summer 2023

Close the Knowledge Gap

Physical thermal "hot box" testing Oak Ridge National Laboratory

2-D modeling

Result: detailed data set on heat flow through various components of spandrel assemblies

Whole-Life Carbon Study

- Construct whole-building **life cycle assessment models** of archetypal buildings in multiple locations.
- Compare low and high **embodied carbon curtain wall systems** to determine the impacts on global warming potential.
- Construct whole-building **energy models** of the same archetypal buildings in the same locations to determine impacts on **operational carbon emissions**.
- Compare the carbon "investment" of higher performing spandrel systems including trade-off between high and low embodied carbon systems on operational carbon.

Engagement Opportunities

Committed Donations!

Wiss, Janney, Elstner Associates, Inc.

Leadership

• Letter of Support

Sustainable development opportunities

Investment

• Financial Support

Phase 1: Design Test Program

1 - Literature Review

- 2 Industry Survey
- 3 Current State of Use
- 4 3D CFD Modeling
- 5 Test Program

THERMAL PERFORMANCE OF SPANDREL ASSEMBLIES IN GLAZED WALL SYSTEMS Charles Pankow Foundation Research Grant RGA #04-22

Phase 1 Report 19 May 2023

Figure 15: CFD Simulation Geometry

ons, the model discretizes air volumes into a finite volume mesh to perform like 2D FEA thermal simulation models, the air within the spandrel cavity was led, as well as the connecting path through the curtain wall mullions, nt openings in the gaskets, openings in the pressure plate, and openings in the jure 16, ventilated case). For the sealed spandrel cases, the openings were connect the spandrel air volume from the exterior air volume (Figure 16, sealed xterior and interior side of the assembly, 6 in. (152.4 mm) thick air layers were Disconnected fully enclosed air volumes within the mullions and IGUs were ids with equivalent average effective thermal conductivities to reduce simulation red areas of Figure 16). This approach is adopted in ANSI/NFRC 100 alculations.

Figure 16: CFD Simulation Air Volumes – Meshed vs. Solid Components

Phase 1: Design Test Program

1 - Literature Review

- 2 Industry Survey
- **3 Current State of Use**
- 4 3D CFD Modeling
- 5 Test Program

Literature Review

TOPICS Lab Testing, 10 Field Thermal Testing, 4 simulation, 33 Condensation, 6 Airflow, 7 Design, 27

Breakdown of Reviewed Documents by Publication Year

Breakdown of Reviewed Documents by Topic

Literature Review - Gaps in Literature

- What are the impacts of contact resistance of components on thermal performance?
- How does size and configuration impact spandrel thermal performance?
- What are the impacts of various spandrel components on thermal performance?
- What is the impact of adjacent assemblies on spandrel thermal performance?
- How can the accuracy of 2D thermal simulation methods when compared to physical test results be improved?
- What is the accuracy of current industry standards and guidelines on simulating thermal performance compared to physical testing?